Monday, November 25, 2024
No menu items!
HomeNatureEarth’s ambipolar electrostatic field and its role in ion escape to space

Earth’s ambipolar electrostatic field and its role in ion escape to space

  • Engwall, E. et al. Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2, 24–27 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haaland, S. et al. Estimating the capture and loss of cold plasma from ionospheric outflow. J. Geophys. Res. Space Phys. 117, A07311 (2012).

    Article 
    ADS 

    Google Scholar
     

  • André, M., Toledo-Redondo, S. & Yau, A. W. in Space Physics and Aeronomy Collection Vol. 2: Magnetospheres in the Solar System (eds Maggiolo, R. et al.) Geophysical Monograph 259 (American Geophysical Union, Wiley, 2021).

  • Kistler, L. M. et al. Cusp and nightside auroral sources of O+ in the plasma sheet. J. Geophys. Res. Space Phys. 124, 10036–10047 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Strangeway, R. J., Ergun, R. E., Su, Y.-J., Carlson, C. W. & Elphic, R. C. Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. Space Phys. 110, A03221 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Collinson, G. et al. Ionospheric ambipolar electric fields of Mars and Venus: comparisons between theoretical predictions and direct observations of the electric potential drop. Geophys. Res. Lett. 46, 1168–1176 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, T. E. & Khazanov, G. V. Mechanisms of ionospheric mass escape. J. Geophys. Res. Space Phys. 115, A00J13 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Axford, W. I. The polar wind and the terrestrial helium budget. J. Geophys. Res. 73, 6855–6859 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Banks, P. M. & Holzer, T. E. The Polar Wind. J. Geophys. Res. Space Phys. 73, 6846–6854 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, K. et al. The effects of the polar rain on the polar wind ion outflow from the nightside ionosphere. J. Geophys. Res. Space Phys. 128, e2023JA031496 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Varney, R. H., Solomon, S. C. & Nicolls, M. J. Heating of the sunlit polar cap ionosphere by reflected photoelectrons. J. Geophys. Res. Space Phys. 119, 8660–8684 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Khazanov, G. V., Liemohn, M. W. & Moore, T. E. Photoelectron effects on the self-consistent potential in the collisionless polar wind. J. Geophys. Res. Space Phys. 102, 7509–7521 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Collinson, G. A. et al. The electric wind of Venus: a global and persistent “polar wind”-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions. Geophys. Res. Lett. 43, 5926–5934 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, S. et al. Field-aligned potentials at Mars from MAVEN observations. Geophys. Res. Lett. 45, 10,119–10,127 (2018).

    Article 

    Google Scholar
     

  • Xu, S., Frahm, R. A., Ma, Y., Luhmann, J. G. & Mitchell, D. L. Magnetic topology at Venus: new insights into the Venus plasma environment. Geophys. Res. Lett. 48, e2021GL095545 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Collinson, G. A. et al. A survey of strong electric potential drops in the ionosphere of Venus. Geophys. Res. Lett. 50, e2023GL104989 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Coates, A. J., Jonstone, A. D., Sojka, J. J. & Wrenn, G. L. Ionospheric photoelectrons observed in the magnetosphere at distances up to 7 earth radii. Planet. Space Sci. 33, 1267–1275 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Fung, S. F. & Hoffman, R. A. A search for parallel electric fields by observing secondary electrons and photoelectrons in the low-altitude auroral zone. J. Geophys. Res. Space Phys. 96, 3533–3548 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Collinson, G. et al. The Endurance Rocket Mission. Space Sci. Rev. 218, 39 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Coates, A. J. et al. Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan. Planet. Space Sci. 59, 1019–1027 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Collinson, G. A. et al. Rocket measurements of electron energy spectra from Earth’s photoelectron production layer. Geophys. Res. Lett. 49, e2022GL098209 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gardner, J. L. & Samson, J. A. R. 304 Å photoelectron spectra of CO, N2, O2 and CO2. J. Electron Spectros. Relat. Phenomena 2, 259–266 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Goembel, L., Doering, J. P., Morrison, D. & Paxton, L. J. Atmospheric O/N2 ratios from photoelectron spectra. J. Geophys. Res. 102, 7411–7419 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gombosi, T. I. & Nagy, A. Time-dependent modeling of field-aligned current-generated ion transients in the polar wind. J. Geophys. Res. 94, 359–369 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Liemohn, M. W., Khazanov, G. V., Moore, T. E. & Guiter, S. M. Self-consistent superthermal electron effects on plasmapheric refilling. J. Geophys. Res. 102, 7523–7536 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Godbole, N. H. et al. Observations of ion upflow and 630.0 nm emission during pulsating aurora. Front. Phys. 10, 997229 (2022).

    Article 

    Google Scholar
     

  • Wahlund, J.-E., Opgenoorth, H. J., Häggström, I., Winser, K. J. & Jones, G. O. L. EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited. J. Geophys. Res. 97, 3019–3037 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Wu, J. et al. Observations of the structure and vertical transport of the polar upper ionosphere with the EISCAT VHF radar. II – first investigations of the topside O(+) and H(+) vertical ion flows. Ann. Geophys. 10, 375–393 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Collinson, G. et al. Electric Mars: a large trans-terminator electric potential drop on closed magnetic field lines above Utopia Planitia. J. Geophys. Res. Space Phys. 112, 2260–2271 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Schunk, R. & Nagy, A. Ionospheres (Cambridge Univ. Press, 2009).

  • Collinson, G., Chornay, D. J., Glocer, A., Paschalidis, N. & Zesta, E. A hybrid electrostatic retarding potential analyzer for the measurement of plasmas at extremely high energy resolution. Rev. Sci. Instrum. 89, 113306 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oyama, K. & Takumi, A. Anisotropy of electron temperature in the ionosphere. Geophys. Res. Lett. 14, 1195–1198 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments